Финансовые риски и методы их оценки в сфере потребительского кредитования

Банковское дело » Потребительский кредит » Финансовые риски и методы их оценки в сфере потребительского кредитования

Страница 2

Q=1/(n+1),

А выборочная дисперсия оценки находится с помощью выражения:

S(Q)=PQ/(n+2),

Где P=1-Q; n – количество ранее выданных и возвращенных кредитов.

2. Заемщик первый раз берет кредит, т.е. статистической информации для оценки его поведения в будущем в его кредитной истории нет. В этом случае среди отечественных и зарубежных специалистов распространено выражение 50%/50% или fifty/fifty т.е. вероятность возврата кредита равна вероятности его невозврата и равна 50%.

Тем не менее, теория вероятностей и математическая статистика дают и здесь конкретные аналитические выражения для расчета риска кредитора. Так, считается, что если ни одного наблюдения над заемщиком нет, следовательно, нельзя отдать статистического предпочтения никакой гипотезе о его поведении в будущем. Поэтому используется равномерное распределение. Обозначая через t текущее время, через T срок кредита и учитывая, что t изменяется от 0 до Т, получим конкретные аналитические выражения для следующих параметров данного распределения:

- среднее выборочное значение времени невозврата кредита равно М=Т/2;

- выборочная дисперсия времени невозврата кредита равна S=Тⁿ/12;

- плотность вероятности времени невозврата кредита равна f(t)=1/T.

3. Заемщик хорошо известен кредитору, так как много раз брал у него кредиты. Однако не всегда и не полностью (например, в обесцененном виде) их возвращал. В этом случае статистической информации о заемщике в его кредитной истории недостаточно. Необходимые оценки проводятся известными классическими методами математической статистики. Лучше всего построить эмпирическую функцию распределения (ЭФР) времени невозврата кредита, которая является исчерпывающей характеристикой исследуемого случайного процесса, и легко вычисляются такие основные параметры, как выборочное среднее арифметическое времени невозврата кредита, выборочная дисперсия этого времени и др.

4. Заемщик известен кредитору только по нескольким случаям его кредитования с различными исходами, т.е. кредитная история заемщика имеет крайне ограниченную статистическую информацию. Тут мы имеем дело с малой выборкой , требующей для получения необходимых оценок применения специальных математических методов. Так как функция распределения (ФР) является исчерпывающей характеристикой случайного процесса, то все ниже описанные методы и направлены на построение ЭФР.

Понятие "малая выборка" определяется достоверностью получаемых результатов, что требует индивидуального подхода к каждой имеющейся реализации случайного процесса. Построение ЭФР по малым выборкам возможно на пути иного (принципиально отличающегося от классического) подхода, основанного на использовании априорной информации в виде, например, диапазона изменений финансовых потерь кредитора. Важную роль при этом играет то, что случайная величина не возводится в некоторый абсолют и ей не приписывается бесконечная плотность распределения, а считается, что данная случайная величина не единственно возможная (хотя и наиболее вероятная) и по соседству с ней могла возникнуть и другая случайная величина, т.е. в некоторой окрестности наблюдаемой случайной величины ее плотность равна нулю. Поэтому на наблюдаемом значении случайной величины строится не дельта-функция, а некоторая непрерывная функция, называемая "функцией вклада" или ядром. К.Фукунага и Е.Парзен детально рассмотрели аспекты построения ЭФР по малым выборкам и предложили 6 видов ядер. Рассмотрим некоторые из этих методов.

А. Первый метод выявления ФР по малому числу наблюдений основан на прямоугольном ядре. Задача была четко поставлена и решена В.В. Чавчанидзе и В.А. Кусмишвили еще в 1961 г., а затем над ее дальнейшим развитием и обоснованием работали отечественные ученые О.П. Березин, И.В. Еременко, А.Н. Свердлик и др. Указанные авторы полагали, что на основе малого числа данных можно приблизиться к ФР более эффективно, чем в случае применения классических методов математической статистики.

Идея Чавчанидзе и Кусмишвили состоит в использовании некоторой дополнительной информации относительно неизвестного истинного распределения и при построении ЭФР учете флюктуационного характера реализующихся на опыте значений исследуемой случайной величины. В данном рассмотрении реализациями случайной величины являются финансовые потери кредитора на моменты, например, полного прекращения выплат заемщиком по своим кредитным обязательствам. Дополнительная априорная информация о возможной плотности распределения должна характеризовать границы кривой распределения и отсутствие скачков функции плотности вероятности внутри этих границ. Интервал возможных финансовых потерь кредитора всегда известен, т.е. минимальные потери равны нулю, а максимальные – равны размеру кредита с процентами по договору.

Страницы: 1 2 3 4

Еще по теме:

Глобальные индексы
Индексы существуют для абсолютного большинства рынков акций. Несмотря на то, что на местных (локальных) рынках они являются признанными ориентирами, при сравнении положения дел на разных локальных рынках возникают затруднения из-за разницы в методиках построения индексов. Чтобы устранить затруднени ...

Модель оценки стоимости активов У. Шарпа
Инвесторы сталкиваются с проблемой оценки стоимости активов. Она зависит главным образом от их риска и доходности. На рынке выдерживается закономерность: чем выше потенциальный риск, тем выше должна быть и ожидаемая доходность. У каждого инвестора формируются свои прогнозы относительно отмеченных п ...

Результаты производственно-финансовой деятельности предприятия в 2004-2006 гг.
Основные показатели, характеризующие результаты производственно-финансовой деятельности предприятия, концентрируется в его отчетах о прибылях и убытках (форма № 2 по ОКУД), а также в формах №№ 7-АПК и 9-АПК[3]. При подготовке дипломной работы были изучены показатели хозяйства за три года - с 2004 п ...

Меню сайта

Copyright © 2019 - All Rights Reserved - www.stablebank.ru