Финансовые риски и методы их оценки в сфере потребительского кредитования

Банковское дело » Потребительский кредит » Финансовые риски и методы их оценки в сфере потребительского кредитования

Страница 2

Q=1/(n+1),

А выборочная дисперсия оценки находится с помощью выражения:

S(Q)=PQ/(n+2),

Где P=1-Q; n – количество ранее выданных и возвращенных кредитов.

2. Заемщик первый раз берет кредит, т.е. статистической информации для оценки его поведения в будущем в его кредитной истории нет. В этом случае среди отечественных и зарубежных специалистов распространено выражение 50%/50% или fifty/fifty т.е. вероятность возврата кредита равна вероятности его невозврата и равна 50%.

Тем не менее, теория вероятностей и математическая статистика дают и здесь конкретные аналитические выражения для расчета риска кредитора. Так, считается, что если ни одного наблюдения над заемщиком нет, следовательно, нельзя отдать статистического предпочтения никакой гипотезе о его поведении в будущем. Поэтому используется равномерное распределение. Обозначая через t текущее время, через T срок кредита и учитывая, что t изменяется от 0 до Т, получим конкретные аналитические выражения для следующих параметров данного распределения:

- среднее выборочное значение времени невозврата кредита равно М=Т/2;

- выборочная дисперсия времени невозврата кредита равна S=Тⁿ/12;

- плотность вероятности времени невозврата кредита равна f(t)=1/T.

3. Заемщик хорошо известен кредитору, так как много раз брал у него кредиты. Однако не всегда и не полностью (например, в обесцененном виде) их возвращал. В этом случае статистической информации о заемщике в его кредитной истории недостаточно. Необходимые оценки проводятся известными классическими методами математической статистики. Лучше всего построить эмпирическую функцию распределения (ЭФР) времени невозврата кредита, которая является исчерпывающей характеристикой исследуемого случайного процесса, и легко вычисляются такие основные параметры, как выборочное среднее арифметическое времени невозврата кредита, выборочная дисперсия этого времени и др.

4. Заемщик известен кредитору только по нескольким случаям его кредитования с различными исходами, т.е. кредитная история заемщика имеет крайне ограниченную статистическую информацию. Тут мы имеем дело с малой выборкой , требующей для получения необходимых оценок применения специальных математических методов. Так как функция распределения (ФР) является исчерпывающей характеристикой случайного процесса, то все ниже описанные методы и направлены на построение ЭФР.

Понятие "малая выборка" определяется достоверностью получаемых результатов, что требует индивидуального подхода к каждой имеющейся реализации случайного процесса. Построение ЭФР по малым выборкам возможно на пути иного (принципиально отличающегося от классического) подхода, основанного на использовании априорной информации в виде, например, диапазона изменений финансовых потерь кредитора. Важную роль при этом играет то, что случайная величина не возводится в некоторый абсолют и ей не приписывается бесконечная плотность распределения, а считается, что данная случайная величина не единственно возможная (хотя и наиболее вероятная) и по соседству с ней могла возникнуть и другая случайная величина, т.е. в некоторой окрестности наблюдаемой случайной величины ее плотность равна нулю. Поэтому на наблюдаемом значении случайной величины строится не дельта-функция, а некоторая непрерывная функция, называемая "функцией вклада" или ядром. К.Фукунага и Е.Парзен детально рассмотрели аспекты построения ЭФР по малым выборкам и предложили 6 видов ядер. Рассмотрим некоторые из этих методов.

А. Первый метод выявления ФР по малому числу наблюдений основан на прямоугольном ядре. Задача была четко поставлена и решена В.В. Чавчанидзе и В.А. Кусмишвили еще в 1961 г., а затем над ее дальнейшим развитием и обоснованием работали отечественные ученые О.П. Березин, И.В. Еременко, А.Н. Свердлик и др. Указанные авторы полагали, что на основе малого числа данных можно приблизиться к ФР более эффективно, чем в случае применения классических методов математической статистики.

Идея Чавчанидзе и Кусмишвили состоит в использовании некоторой дополнительной информации относительно неизвестного истинного распределения и при построении ЭФР учете флюктуационного характера реализующихся на опыте значений исследуемой случайной величины. В данном рассмотрении реализациями случайной величины являются финансовые потери кредитора на моменты, например, полного прекращения выплат заемщиком по своим кредитным обязательствам. Дополнительная априорная информация о возможной плотности распределения должна характеризовать границы кривой распределения и отсутствие скачков функции плотности вероятности внутри этих границ. Интервал возможных финансовых потерь кредитора всегда известен, т.е. минимальные потери равны нулю, а максимальные – равны размеру кредита с процентами по договору.

Страницы: 1 2 3 4

Еще по теме:

Особенности современного рынка ценных бумаг Украины
Для написания данной курсовой работы были использованы нормативные, периодические и литературные источники. Среди нормативно-правовых актов, регулирующих рынок ценных бумаг в целом, ведущее место занимает Закон Украины «О ценных бумагах и фондовой бирже». Он определяет условия и порядок выпуска цен ...

Принципы и направления формирования правовой системы регулирования рынка
По итогам первой половины 90-х гг. прогресс России в области нового законодательства и правовых институтов оценивался относительно невысоко - как “некоторый по законодательству и незначительный по институтам”. Россия заметно отставала от лидеров - стран первой группы (Польша, Словения, Венгрия, Хор ...

Структура кредитной системы СССР в 70-е годы
Ø Государственный банк Ø Стройбанк Ø Банк для внешней торговли Ø Система сберегательных банков Ø Госстрах и Ингосстрах В результате такой реорганизации Государственный банк, помимо эмиссионной и расчетно-кассовой деятельности, взял на себя предоставление краткосро ...

Меню сайта

Copyright © 2019 - All Rights Reserved - www.stablebank.ru